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ABSTRACT

Matchings and perfect matchings have received considerable attention in graph theory as well as in other
related domains (such as, but not limited to, algorithms and optimization). There still remain many open
problems — such as Barnette’s conjecture, Berge-Fulkerson conjecture, and so on — due to which
it continues to remain an active area of research. At the heart of all this research lies the bottleneck
of finding a maximum cardinality matching in undirected graphs. Edmonds’ Blossom algorithm [?],
introduced in 1965, was groundbreaking in providing the first polynomial-time solution by effectively
handling odd-length cycles (blossoms) in O(|E| - |[V|?) time. There are algorithms, with the Linear
Programming backbone, that exploit the properties of the matching polytope for computing a maximum
cardinality matching. For nonbipartite graphs, it either suffers from nontight Linear Programming
relaxation, leading to fractional solutions or otherwise the inclusion of exponential numbers of the
odd-set constraint.

Overtime, there have been several attempts in order to effectively compute the maximum cardinality
matching in general undirected graphs. In 1980, Silvio Micali and Vijay V. Vazirani presented an

algorithm [6] that calculates a maximum cardinality matching in O(|E] - \/17 ) time. It is worth noting
that the Micali-Vazirani algorithm, by far, offers the best theoretical runtime known for the concerned
problem. Despite this, there are no publicly available sagemath implementations. It is for this reason
that researchers in this area are at a loss, and are required to implement this by themselves. Currently, in
SageMath, for general undirected graphs, in the method “Graph.matching()”, it computes a maximum
cardinality matching in O(|E|-|V|?) either through Edmonds’ algorithm or by using Linear Programming
formulation. Ergo, we propose to implement the O(|E]| - \/m ) Micali-Vazirani algorithm for maximum
cardinality matching in undirected graphs in SageMath, and to make all of that available freely to
students, educators as well as researchers all across the world.

This implementation draws upon the work of Prof. Vazirani [7] and the study by Michael
Huang and Clifford Stein [5]. In addition, a presentation [8] delivered by Prof. Vazirani at
the Simons Institute — A Theory of Alternating Paths and Blossoms, from the Perspective of
Minimum Length — was consulted to obtain a more comprehensive understanding of the algorithm.
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1 INTRODUCTION

All the graphs considered in this proposal are undirected and unweighted. (For directed or weighted, or
possibly both, graphs, we may consider the underlying undirected unweighted graph for this problem).
But, they might contain multiple edges. For graph theoretical notation and terminology, the main
resources that are essentially followed, are — Graph Theory (2008, [1]) by Bondy and Murty. This proposal
assumes that the reader has the basic knowledge in graph theory. The reader is requested to refer to the
equivalent papers in case they require an in depth overview of the concerning concepts.

2 EXISTING METHODS IN SAGEMATH

For computing a maximum cardinality matching in general undirected graphs, as of September
7, 2025, in sagemath, in the method *“Graph.matching()”, it either uses the Edmonds’ algorithm
through the networkX implementation, or the Linear Programming formulation. The other methods,
such as “Graph.has_perfect_matching()”, internally use matching() for computing the a maximum
cardinality matching. It’s worth mentioning that for specific cases, for instance bipartite graph, the
method “BipartiteGraph.matching()”, implements O(|E]| - \/m) Edmonds’, Hopcroft-Karp’s, Linear
Programming formulation or using Eppstein’s algorithm. But, our focus shall be on general undirected
graphs.

e N
matching(value_only=False, algorithm='Edmonds', use_edge_labels=False, solver=None,
o verbose=0, integrality_tolerance)

Returns a maximum weighted matching of the graph represented by the list of its edges.
For more information, see the Wikipedia article: Matching(graph theory).

Given a graph G such that each edge e has a weight w,, a maximum matching is a subset S of the
edges of G of maximum weight such that no two edges of S are incident with each other.

As an optimization problem, it can be expressed as:

Maximize D w,b,
e € G.edges()
such that > buy < 1 Vv, € V(G)

(u,v) € G.edges()
b, € {0,1} Vxe€EG)

\ J/

INPUT:

e value_only — boolean (default: False); when set to True, only the cardinal (or the weight) of the
matching is returned.

e algorithm — string (default: ‘Edmonds’)
— ‘Edmonds’ selects Edmonds’ algorithm as implemented in NetworkX,
— ‘LP’ uses a Linear Program formulation of the matching problem.

e use_edge_labels — boolean (default: False)

— when set to True, computes a weighted matching where each edge is weighted by its label (if
an edge has no label, 1 is assumed),
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— when set to False, each edge has weight 1.

e solver — string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to
be used. If set to None, the default one is used. For more information on MILP solvers and which
default solver is used, see the method solve of the class MixedIntegerLinearProgram.

e verbose — integer (default: 0); sets the level of verbosity: set to O by default, which means quiet
(only useful when algorithm == ‘LP’)

e integrality_tolerance — float; parameter for use with MILP solvers over an inexact base ring;
see MixedIntegerLinearProgram.get_values().

OUTPUT:

e When value_only=False (default), this method returns an EdgesView containing the edges of a
maximum matching of G.

e When value_only=True, this method returns the sum of the weights (default: 1) of the edges of a
maximum matching of G. The type of the output may vary according to the type of the edge labels
and the algorithm used.

ALGORITHM:

The problem is solved using Edmond’s algorithm implemented in NetworkX, or using Linear
Programming depending on the value of algorithm.

EXAMPLES:

Maximum matching in a Pappus Graph:

sage: g = graphs.PappusGraph()
sage: g.matching(value_only=True) # needs sage.networkz
9

Same test with the Linear Program formulation:

sage: g = graphs.PappusGraph()
g.matching(algorithm="LP", value_only=True) # needs sage.numerical.mip
9
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Figure 1: Pappus Graph and its maximum (perfect) matching
— shown in bold red

2.1 Edmonds’ algorithm

In the following section, the internal implementation of Edmonds’ algorithm for general undirected
(weighted) graphs is described, which is designed to compute a maximum weighted integer matching
— and, consequently, a maximum cardinality integer matching.

( )
def matching(G, value_only=False, algorithm='Edmonds',
use_edge_labels=False, solver=None, verbose=0,
*, integrality_tolerance=1e-3):
r nmnn
Return a mazimum weighted matching of the graph represented by the list
of its edges.

nmnn

from sage.rings.real_mpfr import RR

def weight(x):

if x in RR:
return x
else:
return 1
w={
L = {}

for u, v, 1 in G.edge_iterator():
if u is v:
continue
fuv = frozenset((u, v))
if fuv not in L or (use_edge_labels and W[fuv] < weight(1)):
L[fuv] =1




if use_edge_labels:
Wlfuv] = weight (1)

if algorithm == "Edmonds":
import networkx
g = networkx.Graph()
if use_edge_labels:
for (u, v), w in W.items():
g.add_edge(u, v, weight=w)
else:
for u, v in L:
g.add_edge(u, v)
d = networkx.max_weight_matching(g)
if value_only:
if use_edge_labels:
return sum(W[frozenset(e)] for e in d)
return Integer(len(d))

from sage.graphs.graph import Graph
return EdgesView(Graph([(u, v, L[frozenset((u, v))]) for u, v in d],
format='list_of_edges"'))

raise ValueError('algorithm must be set to either "Edmonds" or "LP"')
. J

2.2 Linear Programming Formulation

Below, the internal implementation for computing a maximum weight fractional matching in general
undirected (weighted) graph, is presented.

. )
def matching(G, value_only=False, algorithm='Edmonds',

use_edge_labels=False, solver=None, verbose=0,

*, integrality_tolerance=1e-3):
r nmnn
Return a mazimum weighted matching of the graph represented by the list
of 1ts edges.

nmnn

from sage.rings.real_mpfr import RR

def weight(x):

if x in RR:
return x
else:
return 1
w={
L={}

for u, v, 1 in G.edge_iterator():
if u is v:
continue
fuv = frozenset((u, v))
if fuv not in L or (use_edge_labels and W[fuv] < weight(1l)):
Llfuv] =1
if use_edge_labels:




Wlfuv] = weight (1)

if algorithm == "LP":
g =G
from sage.numerical.mip import MixedIntegerLinearProgram
# returns the weight of an edge constidering it may not be
# weighted ...
p = MixedIntegerLinearProgram(maximization=True, solver=solver)
b = p.new_variable(binary=True)
if use_edge_labels:
p-set_objective(p.sum(w * b[fe] for fe, w in W.items()))
else:
p.-set_objective(p.sum(b[fe] for fe in L))
# for any wertex v, there ts at most one edge incident to v in
# the mazimum matching
for v in g:
p.add_constraint (p.sum(b[frozenset(e)] for e in G.edge_iterator(vertices=[v],
«~ labels=False)
if e[0] '= e[1]), max=1)

p.solve(log=verbose)
b = p.get_values(b, convert=bool, tolerance=integrality_tolerance)
if value_only:
if use_edge_labels:
return sum(w for fe, w in W.items() if bl[fe])
return Integer(sum(l for fe in L if b[fe]))

from sage.graphs.graph import Graph

return EdgesView(Graph([(u, v, L[frozenset((u, v))])
for u, v in L if b[frozenset((u, v))1],
format='list_of_edges'))

raise ValueError('algorithm must be set to either "Edmonds" or "LP"')

3 THE PROPOSED NEW METHOD

Followingly, we propose to implement the O(|E| - \/m ) Micali-Vazirani algorithm [6] for maximum
cardinality matching in a general undirected graph. A proof of the algorithm has been provided by Vijay
V. Vazirani [7] in 2020. We adopt the version of the algorithm as described by Michael Huangl and
Clifford Stein in 2017 [5].

3.1 Notations

Firstly, we provide concepts specific to the the concerned algorithm.

1. Matching: A matching for an undirected graph G := (V,E) is a set of edges M such that no two
edges meet at a vertex.

2. Maximum cardinality matching: A matching M is called a maximum cardinality matching
if M| > |N| for each matching N of G, that is the number of edges in the set M is maximized.

3. M-matched/ M-unmatched vertex/ edge: For a matching M of G, a vertex is M-matched if there



exists an edge e in M such that e is in d5(v) (that is — e is incident at v). If no such edge exists,
then v is M-exposed.

Similarly, for an edge e, if e belongs to M, then e is M-matched, otherwise, it is M-ex posed.

4. M-alternating path: A path is M-alternating a simple path that alternates between edges in M
andin E — M.

5. M-augmenting path: An augmenting path is an alternating path that starts and ends with
unmatched vertices.

6. Even level and Odd level of a vertex v: An even level/odd level is the length of the shortest even/
odd alternating path from an unmatched vertex to v, denoted as even_level(v) and odd_level(v),
respectively.

7. Minimum level and maximum level of a vertex v: The minimum level of v, denoted as
minimum_level(v), is the minimum of even_level(v) and odd_level(v). Analogously, the
maximum level is the maximum of even_level(v) and odd_level(v).

8. Inner and outer vertices: A vertex is outer if odd_level(v) > even_level(v) and inner
otherwise.

9. Tenacity: The tenacity of a vertex v is defined as,

tenacity(v) = even_level(v) + odd_level(v)

The tenacity of edge (u,v) is defined as,

odd_level(u) + odd_level(v) +1  for an matched edge uv

tenacity((u,v)) = )
even_level(u) + even_level(v) + 1 otherwise
10. Predecessor, prop, and bridge: For any edge (u,v) such that minimum_level(v) ==
minimum_level(u) + 1, the vertex u is defined to be a predecessor of v. Any edge that joins a
vertex and its predecessor is defined as a prop. If an edge is not a prop, then it is a bridge.

11. Support of a bridge: If (u,v) is a bridge with tenacity t, then its support is defined as the set
{w | tenacity(w) = t and there exists a max_level(w) path containing (u, v)}.

12. The double depth first search (DDFS) algorithm is also specifically emphasized [6], since it
is an essential method for finding augmenting paths and forming petals. The DDFS finds disjoint
paths to the root nodes from any pair of vertices in a level graph. In the algorithm, if such paths
exist then an augmenting path is found, otherwise there is a bottleneck and we form a petal.

3.2 Description

The algorithm is a non-bipartite matching algorithm that operates in phases. Each phase finds a maximal
set of vertex disjoint shortest length augmenting paths. Like the Hopcroft-Karp algorithm [4] for bipartite
graphs, each phase synchronously constructs a level graph using breadth-first search from unmatched
vertices to find alternating paths. Every time the level graph expands, the algorithm identifies bridges
and performs double depth first searches on them to check for augmenting paths and to form petals. After
performing the double depth first searches at the current level, the phase ends if a path was augmented.
The algorithm terminates once we search the entire graph and do not find an augmenting path.



Algorithm 1 : Micali-Vazirani Algorithm

Input: An unweighted undirected graph G

Output: A maximum cardinality matching M of G

Set initial greedy matching for G

Reset edge labels

Set minimum_level(v) < 0 and maximum_level « oo for each unmatched vertex v
Set minimum_level(v) < oo and maximum_level « oo for each matched vertex v
// Line 8 to 33: One complete phase

Set level < 0

// Line 10 to 20: The synchronous breadth-first search

if there exist u such that maximum_level(u) == level or minimum_level(u) == level
then

11: continue

12: else

13: Return current matching

14: end if

15: for each u such that maximum_level(u) == level or minimum_level(u) == level do
16: for each unscanned (u, v) with appropriate edge parity do

17: if minimum_level(v) > level + 1 then

18: Set minimum_level(v) « level + 1

19: Add u to the list of predecessors of u

20: Label (u, v) as prop

21: else

22: Label (u, v) as bridge

23: if tenacity(u,v)! = co then

24: Add (u, v) to the list of bridges with the same tenacity

25: end if

26: end if

27: end for

28: end for

29: // Line 30 to 45: Using DDFS to find augmenting paths and forming petals

30: for each bridge of tenacity == 2 «* level + 1 do

31: Find support using DDFS

32: if bottleneck found then

P RIS
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33: Augment alternating path

34: Delete the vertices in the augmented path and all vertices that are orphanned (no
predcessors) as a result

35: else

36: for each v in the support do

37: Set maximumyevel(v) = 2 «x level + 1 — minimumevel(v)

38: if v is an inner vertex then

39: for all incident (v, u) which are not props do

40: if tenacity(u,v)! = co then

41: Add (u, v) to the list of bridges with the same tenacity

42: end if



43; end for

44: end if
45: end for
46: end if

47: end for

48: Set level « level +1

49: // Line 49: Phase termination condition

50: if augmentation occured then

51: Go back to line 4

52: else

53: Go to line 10

54: end if

55: // Lines 10 : Algorithm termination condition
56: Return the current matching

Since each phase ends when the maximum set of vertex disjoint minimum length alternating path is
augmented, there are at most 4/ |V'| phases. The algorithm also guarantees O(|E|) runtime per phase [3]
which leads to the overall runtime of O(|E| - V|V |).

The above pseudocode is an overview of the overall algorithm. For a detailed go through, the reader may
refer to the original paper [6] and the paper by Michael Huang and Clifford Stein [5].

4 ABOUT ME

4.1 Personal Details

Parameter Value

Name Janmenjaya Panda
Mail janmenjaya.panda.22 @ gmail.com
Phone +916370642056
Linked In linkedin.com/in/panda-janmenjaya/
GitHub github.com/janmenjayap/
Website janmenjaya-panda.web.app/
Resume Link

Location Bangalore, India
Timezone IST (GMT + 05: 30)

4.2 Background

This section includes some of my details concerning me, my skills and my familiarity with open-source
applications and sage.
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4.2.1 Whoaml

I am Janmenjaya Panda, currently a Project-Trainee, working with Prof. Nishad Kothari in the Department
of Algorithms and Graphs at Indian Institute of Technology Madras. I graduated from Indian Institute of
Technology Madras in 2024 with a Bachelor’s degree in Mechanical Engeinnering and with two minors,
one in Computing and the other in Artificial Intelligence. My current interests include maths, statistics,
computer vision and theoretical computer science, in particular graph theory, with a focus on matching
theory. I also play some chess in my free time.

4.2.2 Technical Skills

My coursework at II'TM, pertaining to the theoretical computer science included: Design and Analysis
of Algorithms, Advanced Graph Algorithms, Approximation Algorithms, Linear Programming and
Combinatorial Optimization, Nonlinear Optimization: Theory and algorithms. I am well acquainted with
sagemath and it’s overall structure, at least wrt the graph module.

4.2.3 Platform and Operating System

I have been using Ubuntu 20.04 LTS since I attended the course Introduction to Scientific Computing in
my second semester. I have the local set up of sage develop built and tested on my local system several
times since March 2024.

4.2.4 My Open source contributions and GSoC 2024: Sagemath

In 2024 Google Summer of Code, I proposed the idea On Decompositions, Generation Methods and
related concepts in the theory of Matching Covered Graphs and with the guidance and mentorship of
Prof. David Coudert, I successfully completed the fundamental implementations of the project [Link]
with 12 PRs (8 Merged and 4 currently in review), 4 Issues (3 Closed and 1 currently ongoing) and
currently working on it’s further extension methods.

4.2.5 My familiarity with sagemath

I have been doing my research in matching covered graph for nearly two years. Even before that while I
used to learn finite element method, differential geometry, differential equations, and I can never remind
myself of a moment, where I have not used SageMath, let it be in the learning aspect or in the assignment/
project aspect. It has been an wonderful journey for me to get an opportunity to pay back not only just the
open source software that I have used so often in my academic voyage but also in the particular domain
that piques me, that is the subject of my research: matching covered graphs.

The Sage community is a great, inclusive community that welcomes all new contributors. I remember
I faced several issues while building SageMath from scratch on my local machine. I mentioned this
issue on the Google Group of SageMath with all the required details. The maintainers were pretty
prompt and to the point in replying to my queries. It is so good to have such a supportive and helpful
community. Furthermore, my mentor is one of the best mentors I could have had in my GSoC 2024
journey. For the PRs related to my GSoC work, sometimes I also used to get reviews from other
reviewers besides my mentor (for instance, I had forgotten to include the name of a newly created
file ‘src/sage/graphs/matching_covered_graph.py‘in ‘src/sage/graphs/meson.build’, dueto
which the Meson test cases were failing; this was pointed out by another reviewer).
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It has been an amazing journey with SageMath for me as a student, me as a researcher and me as a
developer.

4.3 Availibility

I will be able to allocate 30 dedicated hours per week to the project till the end of November (in case the
project gets extended).

4.4 Schedule

This subsection throws light on the milestones and deliverables that we plan to achieve:

1. Community Bonding Period (May 8 - June 1): During the bonding time I shall raise relevant
issues, fix existing bugs, help to merge pending PRs, close issues, and create milestones on the
GitHub Project. Furthermore, I shall discuss with the mentor the road map, the class and file
structure and finalize the plan of action.

First Phase (June 2 - July 14): Implementing the function FindPATH [6]
Second Phase (July 14 - August 25): Implementing Subroutine Blossom-Augmentation [6]

Third Phase (July 14 - September 1): Implementing the routine Search and the main method

A

Last Phase - Tentative (September 1 - November 10): Implementing different variants and
specific cases of initialization [5]

PS — This division may be treated as checkpoints and milestones to be marked.
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